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FAST DECODING BASED ON ZIGZAG
DECONVOLUTION FOR RANDOM
PROJECTION CODE

BACKGROUND

In digital communication systems, a low density parity-
check code (LDPC) is an error correcting code used in noisy
communication channels to reduce a probability of a loss of
information. LDPC codes are generally represented using a
bipartite graph and decoded by an iterative message-passing
(MP) algorithm. The MP algorithm iteratively passes mes-
sages between variable nodes (e.g., message nodes) and
check nodes (e.g., constraint nodes) along connected edges of
the bipartite graph. If the messages passed along the edges are
probabilities, then the decoding is referred to as belief propa-
gation (BP) decoding.

Compressive sensing (CS), which can be based on a low-
density measurement matrix, may also be used for error cor-
rection coding. CS is a signal processing technique for recon-
structing a signal that takes advantage of a signal’s sparseness
or compressibility. Using CS, an n-dimensional signal having
a sparse or compressible representation can be reconstructed
from m linear measurements, even if m<n. As with LDPC, a
compressive sensing (CS) system can use belief propagation
(BP) decoding. Such a system is referred to herein as a CS-BP
system.

The complexity of CS-BP decoding is much higher than
LDPC decoding because the constraint nodes of a CS-BP
system have to compute convolutions of several probability
distribution functions (PDFs). A CS-BP system computes
measurements via weighted sum operations, instead of logi-
cal exclusive OR (XOR), as used for binary LDPC systems.

A standard processing solution for CS-BP systems is to
perform processing in the frequency domain, such as via fast
Fourier transform (FFT) and inverse FFT (IFFT). This fre-
quency domain based processing converts convolution to
multiplication and deconvolution to division. However, such
processing is not efficient for binary-input PDFs.

SUMMARY

This application describes techniques for fast decoding at a
receiver for data encoded using a compressive coded modu-
lation (CCM). CCM simultaneously achieves joint source-
channel coding and seamless rate adaptation. CCM is based
on a random projection (RP) code inspired by compressive
sensing (CS) theory, such that generated code may rely on
properties of sparseness. The RP code (RPC) resembles low-
density parity-check (LDPC) code, in that it can be repre-
sented in a receiver by a bipartite graph. However, unlike
LDPC, variable nodes (e.g., message nodes) of the bipartite
graph are represented by binary source bits and constraint
nodes (e.g., check nodes) are represented by received multi-
level RP symbols. Hence, RPC can be decoded at a receiver
using belief propagation (BP).

The decoding algorithm in the receiver is denoted as a
“RPC-BP decoding algorithm” herein, since variable nodes
are represented as binary and constraint nodes are represented
by multi-level symbols. RPC-BP decoding is performed in
the time domain by computing convolutions to generate a
probability density function (PDF) for neighboring variable
nodes. Performing RPC-BP using convolutions is signifi-
cantly more efficient (e.g., 20 times faster) than frequency
domain (e.g., fast Fourier transform (FFT)) processing, as
used in compressive sensing (CS) with belief propagation
(BP) (i.e., CS-BP). To further add to the processing efficiency
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2

of the decoder, the RPC-BP decoding algorithm may use a
ZigZag iteration to perform deconvolutions of variable nodes
to facilitate generation of constraint node messages for belief
propagation. The ZigZag iteration (i.e., ZigZag deconvolu-
tion) can be performed in a bidirectional fashion (e.g., left-
to-right or right-to-left) to enhance precision, with a best
direction determined by the RPC-BP decoder based on values
of variable node probabilities.

As part of RPC-BP decoding, rate adaptation may be seam-
less, as the number of RP symbols received can be adjusted in
fine granularity. As an example, for a current set of binary
source bits, a transmitter sends a block of RP symbols to a
receiver. Upon successful demodulation and decoding of the
current set of binary source bits, the receiver sends an
acknowledgment to the transmitter, signaling the transmitter
to cease encoding, modulating and transmitting RP symbols
for the current set of binary source bits. However, if the
receiver does not send an acknowledgment to the transmitter,
the transmitter may send several more symbols to the
receiver, based on a predetermined granularity, and listen for
an acknowledgment. The transmitter may continue the pro-
cess of sending several more symbols and listening for an
acknowledgment from the receiver indicating successful
decoding of the current set of binary source bits.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
jectmatter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter. The term “tech-
niques,” for instance, may refer to circuitry, hardware logic,
device(s), system(s), method(s) and/or computer-readable
instructions as permitted by the context above and throughout
the document.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The same numbers are used throughout
the drawings to reference like features and components.

FIG. 1 is a symbolic diagram of coding applied to an
example set of binary input bits for mapping to a modulation
constellation for transmission.

FIG. 2 is a symbolic diagram of an example matrix repre-
sentation of a random projection code to encode input binary
source bits using weight values to generate multi-level rate-
less symbols.

FIG. 3 is a symbolic diagram of an example portion of a
bipartite graph representation at a decoder.

FIG. 4 defines an example of a set of symbolic notations
used in belief propagation (BP) decoding.

FIG. 5 is a symbolic diagram illustrating example convo-
Iution and ZigZag deconvolution performed by a decoder.

FIG. 6 illustrates an example environment of a transmitter
and receiver used for RPC-BP decoding.

FIG. 7 illustrates example methods of RPC-BP decoding.

DETAILED DESCRIPTION

As discussed above, existing decoding algorithms are inef-
ficient, as they rely on calculating fast Fourier transforms
(FFTs) and inverse FFTs. This application describes decod-
ing techniques that may be used for efficient decoding of a
block of multilevel symbols, some or many of which may be
corrupted by noise induced by a transmission channel, into a
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desired block of source bits. The techniques described herein
are also suitable for real time decoding of high speed (e.g.,
=1 Gbps) bit streams in a variety of communications devices
and systems, such as wireless transceivers, wireless repeat-
ers, wireless routers, cable modems, digital subscriber line
(DSL) modems, power-line modems, or the like. The tech-
niques described herein allow such devices to efficiently and
effectively decode source bits, for example, in noisy and/or
power constrained environments.

FIG. 1 shows an example environment 100 that illustrates
a bipartite graph 102 representation used for the construction
of random projection (RP) symbols at constraint nodes 104
from binary source bits at variable nodes 106. As an
example, source bits at variable nodes 106 may be repre-
sented by a binary vector b=(b,, b, . . ., by)E{0,1}". RP
symbols at constraint nodes 104 may be represented by a
multi-level vector s=(s,, s, . . . , 5;,). Each of variable nodes
106 can be connected to one or more constraint nodes 104
by various weights (e.g., 1, +2, +4) represented by edges of
bipartite graph 102. In various embodiments, the weights are
non-zero values selected from a weight multiset W, designed
to control or influence, for example, an entropy, free dis-
tance, mean and signal to noise ratio (SNR) of received RP
symbols. As shown in FIG. 1, each constraint node 104 is
connected to six variable nodes 106, but other numbers of
connections are within the scope of this disclosure.

As an example of using the bipartite graph to generate RP
symbols at constraint nodes 104 from source bits at variable
nodes 106, as shown in FIG. 1, the top RP symbol value of
6 is generated by a sum of source bits 1, 1, 0,1, 1, 0 and edge
weights of +4, -1, -4, +2, +1, -2, respectively. The sum
yields (1)(4)+(1)(-D+O)(-4)+(D(2)+(1)(1)+(0)(-2)=6. A
similar computation of source bits at variable nodes 106 and
corresponding edge weights of bipartite graph 102 would
yield a sum of 0 for the second from the top of constraint
nodes 104.

In the context of example environment 100, generated RP
symbols are paired and mapped to a modulation constella-
tion 108, such as the I (i.e., in-phase) and Q (i.e., quadrature-
phase) components of a quadrature amplitude modulation
(QAM) constellation. As shown in FIG. 1, pairs of RP
symbols (6,0) and (1,-1) are generated to create constella-
tion symbols that are mapped to the modulation constella-
tion 108. To facilitate mapping of binary source bits to RP
symbols, pairing of RP symbols and mapping RP symbol
pairs to modulation constellation 108, RP symbol values of
vector s are constrained such that sE[n,,, n,,.] As an
example, when the weight set is (1, £2, 4, +4), s,&[-11,
+11], resulting in a (23x23) modulation constellation 108.
Thus, in this example, edge weights of bipartite graph 102
may be structured such that the sum of source bits with
corresponding edge weights would yield a summed value
that is =—11 and =+11. This facilitates using a fixed size
modulation constellation 108 for transmission of pairs of RP
symbols by a QAM transmitter. Thus, a pair of RP symbols
corresponds to a portion of the source bits at variable nodes
106 for transmission by a QAM transmitter.

FIG. 2 illustrates a matrix representation for the genera-
tion of RP symbols at constraint nodes 104 from source bits
at variable nodes 106 in bipartite graph 102. If M symbols
for transmission are stacked to form a symbol vector s=
(815 S35 - - -, Say), the bit-to-symbol mapping process can be
concisely described as s=G'b, where G can be represented
by MxN low-density matrix 202 (e.g., a low-density mea-
surement matrix), and b can be represented by Nx1 source
bit vector 204. As an example, low-density matrix 202 may
be structured such that there are only L (e.g. L=8) non-zero
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values on each row (i.e. low-density). Thus, G can be
constructed with M rows, each with N values, where values
in each row are all zeros, except for the weight values.

Thus, only L entries in each row of G, g, (m=1,2, ...,
N) are non-zero, and the L entries can take values of W, from
a weight multiset W which includes various permutations of
{W,, W,, . .., W,} that can be interspersed with zero
values. FIG. 2 illustrates a simple example of permutations
of the weight multiset W such that 1<k<[.. The weight
values are distributed in the rows of the matrix such that
multiplying the MxN matrix by the Nx1 vector generates M
symbols, each based on a different weighted combination of
L source weights distributed with zero values of each row.
Both the order and the position of the L weight values
distributed with zero values in the rows of G can vary from
one row to another. Thus, numerous permutations exist for
the distribution of L weight values into rows of matrix 202.
Thus, low-density matrix 202 can define, at least in part, the
connectivity structure between constraint nodes 104 and
variable nodes 106 in bipartite graph 102. In various
embodiments, M may equal N or M may be less than or
more than N. Low-density matrix 202 may be stacked onto
one or more sub-matrices, effectively increasing the value of
M, such that additional RP symbols may be generated.

In an example implementation, the source bits to be
transmitted are divided into frames, with each frame having
a length denoted by N. Depending on the specific imple-
mentation, a frame may have a length of, for example, 100,
400, 500, etc. As illustrated in FIG. 2, the source bits
(b;, b,, . . ., by) for a particular frame are arranged as a
column to form an Nx1 source matrix 204.

Source bit vector 204 to RP symbol mapping can be
repeated an arbitrary number of times. A sender may keep
generating and transmitting RP symbols until the receiver
successfully decodes the source bits and returns an acknowl-
edgement to the sender. If this happens after M RP symbols
(M/2 constellation symbols) are transmitted, then the trans-
mission rate will be:

®

Different values of M correspond to different transmission
rates. As M can be adjusted at a very fine granularity, smooth
rate adaptation can be achieved.

The achievable transmission rate is generally a function of
source data sparsity, transmission channel conditions and RP
code design. Ideally, there is an optimal code (e.g., weight
multiset W and/or configuration of low-density matrix 202)
for each source sparsity and channel condition. However,
CCM can provide for “blind” rate adaptation (i.e. the
channel condition is not known to the sender). Therefore, as
part of RP code design, weights are selected which achieve
an overall high throughput for the primary SNR range of
wired or wireless communication channels.

According to CS theory, the number of RP symbols
required for successful decoding of source bit vector 204
decreases as source bit vector 204 sparsity and/or redun-
dancy increases, as well as when channel quality increases.
Therefore, a source bit vector 204 with higher sparsity
and/or redundancy can be decoded from a smaller number of
RP symbols, which results in a higher transmission rate. In
contrast, more RP symbols need to be transmitted when
channel conditions worsen, which results in a lower trans-
mission rate. Thus, if source bit vector 204 is sparse, then the
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probability of 1’s occurring is p, such that p<0.5. The
number of RP symbols required to decode source bit vector
204 is generally proportional to the sparsity p. Therefore, the
transmission rate for sparse source (i.e., p<0.5), as defined in
eq. (1), will be higher than for non-sparse source (i.e.,
p=0.5). By way of example and not limitation, simple bit
flipping can be used for bit streams where p>0.5.

Thus, compression gain can be achieved when source bit
vector 204 is sparse. As an example, sparsity of source bit
vector 204 may be determined, and an appropriate weight set
may be selected from weight multiset W. To facilitate digital
transmission of RP symbols, weight sets are designed such
that RP symbols have a fixed mean (e.g., zero mean)
regardless of source bit sparsity p. Also, CCM is designed
with a large free distance between codewords (e.g., vectors
of RP symbols) such that a sequence of transmitted symbols
is robust against channel noise.

Additionally, CCM incorporates a rate adaptation scheme,
such that transmission could stop, such as via receipt of an
acknowledgement from a receiver, at any time before all M
symbols generated by matrix G are transmitted. Therefore,
if decoding in a receiver is successful after a first K symbols
are transmitted, the actual encoding matrix used is Gy,
which is also designed to create a large free distance for all
K symbols.

Thus, RP symbols are transmitted to a receiver. A receiver
obtains noisy versions of the transmitted symbols. Let §
denote the vector of the received symbols, then we have
§=G-b+e, where e is the error vector.

In an additive white Gaussian noise (AWGN) channel, e
may be comprised of Gaussian noises. In a fading channel
with fading parameter h, each element in e may be n,/h,
where n, and h, are the noise level and fading parameter for
the i* symbol.

Decoding is equivalent to finding the bit vector with the
maximum a posteriori (MAP) probability. It is an inference
problem which can be formalized as:

E:arg max P(b13)
0,1}

such that: $=Gb+e

@

Example Belief Propagation Decoding

The RP code (RPC) can be represented by a bipartite
graph, where source bits are represented as variable nodes
connected by weighted edges to constraint nodes that rep-
resent multi-level RP symbols received at a receiver. Hence,
RPC can be decoded using belief propagation (BP). How-
ever, since RP symbols are generated by arithmetic addition
rather than logical XOR as commonly used for LDPC, the
belief computation at constraint nodes can be much more
complex relative to LDPC decoding. The complexity of
CS-BP decoding is also higher than LDPC decoding, as
CS-BP decoding uses fast Fourier transform (FFT) process-
ing. Techniques are described herein for reducing the com-
putational complexity of the decoding algorithm for the
CCM scheme relative to other common decoding schemes.

For binary variable nodes and multi-level constraint
nodes, the belief computation at constraint nodes is more
efficiently accomplished by direct convolution rather than
the fast Fourier transform (FFT), as used in CS-BP decod-
ing. For each constraint node, the convolution of the distri-
butions for all neighboring variable nodes is computed to
generate a probability distribution function (PDF), and then
the PDF is reused for all outgoing messages from a con-
straint node to its neighboring (e.g., connected) variable
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nodes. This is performed by deconvolving the PDF of the
variable node being processed to generate a partial prob-
ability distribution function for each of the neighboring
variable nodes. To save computational cost, the zero multi-
plication in the convolution can be avoided. In addition, a
ZigZag iteration is used to perform the deconvolution for
each neighboring variable node of a given constraint node in
the bipartite graph. Utilizing convolutions and ZigZag
deconvolutions as part of the iterative belief propagation
decoding algorithm in RPC-BP is computationally more
efficient than decoding techniques used in the CS-BP algo-
rithm.

Example RPC-BP Decoding Algorithm

A decoder in a receiver can be configured to use a bipartite
graph representation to decode N source bits (e.g., source bit
vector 204) from M, noisy received RP symbols. As an
example, M, may be less than or equal to N. In the bipartite
graph representation in the receiver, each of the N source
bits can be associated with, or represented by, a variable
node. Additionally, and each of the M, noisy received RP
symbols can be associated with, or represented by, a con-
straint node. Therefore, in various embodiments, an initial
bipartite graph representation has N binary variable nodes
and M, multi-valued constraint nodes. Messages associated
with probabilities (e.g., beliefs, likelihoods) of variable
nodes representing O or 1 are passed between variable nodes
and constraint nodes as part of an iterative belief propaga-
tion algorithm. If a receiver successfully decodes the N bits
from the received noisy M, multi-valued RP symbols, the
receiver sends an acknowledgement to the transmitter. If the
transmitter does not receive an acknowledgement, the trans-
mitter will send additional RP symbols which are associated
with, or represented by, additional constraint nodes in the
receiver. This process continues until the receiver believes
(e.g., probabilistically determines) that the N source bits are
successfully decoded.

FIG. 3 illustrates a portion of a bipartite graph represen-
tation that may be utilized by a decoder in a receiver. FIG.
3 shows eight variable nodes 302-316 each associated with
eight binary bits (e.g., bits 1-8) of a portion of a source bit
vector (e.g., source bit vector 204). Eight variable nodes are
selected for illustrative purposes, as other numbers of vari-
able nodes may be used. Variable nodes 302-316 are shown
connected to constraint node 318, via edges with weights
shown from top to bottom as +4, -1, -4, +2, +4, +1, -2 and
—4. FIG. 3 illustrates that variable nodes 302-316 are con-
nected to a single constraint node 318 for illustrative pur-
poses only, as variable nodes may connect to multiple
constraint nodes. The terms “variable” and “constraint”
nodes connected by weighted edges are used for purposes of
discussion, as either node can be viewed as a processing
node, a node representation, an abstraction of a node and/or
a processed node. Thus, such nodes may perform process-
ing, be externally processed, represent an abstract process-
ing structure, or combinations thereof.

Thus, for purposes of discussion, FIG. 3 illustrates a
portion of an example bipartite graph representation where
8 desired bit values of a portion of a source bit vector are
associated with 8 variable nodes 302-316. Thus, variable
nodes 302-316 and constraint node 318 are but a small
portion of nodes that make up a bipartite graph representa-
tion used for purposes of describing a decoding process
performed by a decoder at a receiver, where many source
bits are each associated with a corresponding variable node
and many received symbols are each associated with a
corresponding constraint node. Constraint node 318 is
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shown associated with a received symbol S_, received by a
receiver in the presence of noise.

Let v denote a particular variable node, such as one of
variable nodes 302-316, and let ¢ denote a constraint node,
such as constraint node 318. FIG. 4 illustrates some nota-
tions used to describe the following illustrative operations of
an RPC-BP decoding algorithm.

Operation 1) Initialization: Initialize messages from vari-
able nodes to constraint nodes with a priori probability p.

Uy e P 1)=P 3

The variable p represents an initial probability that vari-
able node v is 1. As an example, if an N-length source bit
vector is known to be random, p can be initially set to 0.5.
Alternatively, a transmitter can scan a source bit vector, and
determine a probability of a 1 occurring in the source bit
vector, and provide this information to a decoding receiver.
As examples, the source bit vector can be sparse or random,
such that p may take on different values (e.g., 0.1, 0.15, 0.25,
0.5, etc.) for different source bit vectors. In various embodi-
ments, a transmitter and decoding receiver pair may select
different low-density matrices 202 based on a determined
value of p, or ranges of p, as well as a previously determined,
or estimated noise level and/or a signal-to-noise ratio (SNR)
on an associated transmission channel. Borrowing terminol-
ogy from CS theory, for sparse source bit vectors, p may be
referred to as the source sparsity, or alternatively, N-length
source bit vectors may be referred to asp-sparse.

Operation 2) Computation at constraint nodes: For each
constraint node ¢, compute a probability distribution func-
tion p.(-) according to the incoming messages from all
neighboring (e.g., connected) variable nodes v via convo-
Iution as shown in eq. (4). For each neighboring variable
node v (e.g., v€n(c)) of an associated constraint node c,
compute p_,, () via deconvolution as shown in eq. (5):

P hen (WG VD) Q)

DPew=Dwlev)p,) )]

As an example, w(c,v) corresponds to the weights
between variable nodes 302-316 and constraint node 318 in
FIG. 3. (Note that w(c,v)=w(v,c)). In eq. (4) above, v&n(c)
implies that p_ is calculated for each neighboring variable
node v that is connected to a corresponding constraint node
¢ via a weighted edge. Thus, p,. can be viewed as a PDF that
includes a PDF contribution for each neighboring variable
node v of a constraint node c.

In the example environment illustrated in FIG. 3, each of
variable nodes 302-316 associated with bits 1-8 are used to
calculate p,. at constraint node 318. Thus, in the convolution
of eq. (4), each variable node 302-316 contributes a convo-
Iution of its PDF to p.. As an example, assume that the
probability that a bit is equal to “1” is P (1)=0.3. Therefore,
the probability that a bit is equal to “0” is 1-P (1)=0.7=P,
(0). Thus, under these initial assumptions, as shown in FIG.
3, in the calculation of p_. in eq. (4), variable node 316 would
contribute PDF 320 (i.e., w(v,c)-p,) in the convolution with
values at 0 and -4, associated with P,(0) and P,(1), respec-
tively.

In eq. (5), the deconvolution p_.,, can be viewed as a partial
PDF that excludes a convolved contribution of an associated
variable node v from p.. Thus, as an example, for the
deconvolution p_,, where v is variable node 316, p_,, can be
viewed as a partial PDF that excludes the convolution of
PDF 320 from p..

Then, at the corresponding constraint node ¢, compute
p,(0) and p,(1) based on the associated partial PDF of node

o

8

v, the noise probability distribution function (PDF) p, and
the received symbol value s_ associated with constraint node
c as:

Pol0) = 3 panld)- pelsc =D ©

Po(D) = 3 panld)- pelse = i = wle, v)) ™

The PDF p, can be determined or estimated by numerous
techniques. As an example, a communication system can
transmit known pilot symbols, where an additive white
Gaussian noise (AWGN) channel is assumed, allowing for
p. to be determined or estimated.

Then, compute the constraint node message for node v as
via normalization, as:

Mcﬁv’

pu(1) ®)

Operation 3) Computation at variable nodes: For each
variable node v, compute p,(0) and p (1) via multiplication:

pO=0-p[] d-pe) ®

cen(v)

P =p[] s a0

cen(v)

Then for each neighboring constraint node c&n(v), com-
pute p,_,. division and normalization, as:

(D) peoy (1D
PO/ (L =) + pulL)/ ey

Hyoe =

Repeat operations 2 and 3 until convergence is deter-
mined, or a maximum iteration time or maximum number of
iterations are reached. As an example, a maximum number
of iterations can be set to 15, beyond which the any
performance gain is marginal.

Operation 4) Output: For each variable node v, compute
p,(0)and p (1) according to eq. (9 and/or 10), and output the
estimated bit value via hard decision.

A primary difference between this RPC-BP decoding
algorithm and the CS-BP decoding algorithm lies in the
computation at the constraint nodes (operation 2). In various
embodiments, variable nodes and the noise node are pro-
cessed in separate operations, because the former is binary
and the latter is continuously valued. A ZigZag deconvolu-
tion is described below that greatly simplifies the computa-
tion of p,, in eq. (§), resulting in reduced computational
complexity.

FIG. 5 illustrates an example environment 500 that
depicts the convolution by shift addition as well as ZigZag
deconvolution. The convolution flow is shown from top to
bottom. The top row depicts p_ (). As an example, in
Po,(0), let v=variable node 316 in FIG. 3 (e.g., prior to the
convolution of the 87 bit). Thus, in this example, the top row
represents the convolution of variable nodes 302-314, cor-
responding to bits 1-7 in FIG. 3, excluding variable node v
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(e.g., variable node 316, the 8” bit). The second row
represents w(v,c)p,, such as PDF 320 associated with vari-
able node 316 in FIG. 3. In this example, the weight between
variable node v (e.g., variable node 316) and constraint node
¢ (e.g., constraint node 318) is w(v,c)=—4. Hence, the PDF
of w(v,c)p, only has two spikes at —4 and 0, corresponding
to p,(1) and p,(0), respectively. The convolution of w(v,c)-p,,
and any PDF p,. (including but not limited to p_,,) can be
computed by:

@*w(,0)p )= A0) pei)+p (1) pe(n-w(3,0)) 12

Thus, the third row in FIG. 5, p,(0)p..,,(n), is the convo-
Iution of the top row and the spike at 0 in the second row,
corresponding to the probability that the 8 bit is zero, using
the example of FIG. 3. The values in the third row are shown
as solid lines. The fourth row is p,(1)p., (n-w(v,c)) for
w(v,c)=—4, which is the convolution of the top row and the
spike at —4 in the second row, corresponding to the prob-
ability that the 87 bit is one, using the example of FIG. 3.
The values in the fourth row are shown as dashed lines.

The addition in eq. (12) is shown in the middle of the FIG.
5, as the addition of the third row and the fourth row to
generate the bottom row, p.(n), of eq. (4). The bottom row
illustrates the addition of the constituent components of the
third and fourth rows, shown as corresponding solid and
dashed line constituent components of the addition. Note
that the four components on the right (in rectangle 502) of
p.(n) contain only constituent components from the third
row (e.g., only solid lines). Thus, dividing these components
in rectangle 502 by p,(0) yields the corresponding compo-
nents in p,,(n) in the top row. Likewise, the four compo-
nents on the left of p_(n) contain only constituent compo-
nents from the third row (e.g., only dashed lines). Dividing
these components by p, (1) and shifting them by 4 yields the
corresponding components in p,,(n) in the top row.

The deconvolution flow is shown from bottom to top in
FIG. 5, in which the rectangles 502-510 highlight a ZigZag
deconvolution process. In FIG. 5, the ZigZag deconvolution
is demonstrated from right to left. However, the ZigZag
deconvolution process can be performed in both directions
(i.e., right to left or left to right). The practical direction to
perform the ZigZag deconvolution can be determined by the
values of p,(0) and p,(1). For example, when p,(0)>p, (1),
the deconvolution of a selected variable node v (e.g., a
selected bit) from p.(n) may be computed by:

Pe() = (Pow (= w(v, ) - py(1) a3

pu(0)

pew(n) =

When p,(0)=p,(1), the deconvolution of a selected vari-
able node v may be computed by:

Pewl +w(v, ¢))- py(0) = pe(n + wlv, ¢)) 14

pu(l)

pew(n) =

Let n,,, and n,,,. be the minimum and the maximum
value of constraint node c, respectively. As an example,
referring back to FIG. 3, a bit sequence of (1,0, 0, 1, 1, 1,
0, 0) associated with bits 1-8 of variable nodes 302-316
would yield a sum n,, =+11 at constraint node 318. Con-
versely, a bit sequence of (0, 1, 1, 0, 0, 0, 1, 1) would yield
a sum for n,,,,,=11. FIG. 5 illustrates n,,,,,=+11 and n,,,;,,=—

11. Thus, for né(n,,,, 1n,,,.], p..,(n)=0. Therefore, by simple
recursion, the ZigZag deconvolution process can be per-
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formed to deconvolve a selected variable node v from p_(n)
by using selected values from p_(n). Moreover, the ZigZag
deconvolution process can be performed in a bidirectional
manner (e.g., lefi-to-right or right-to-left) using selected
values at or near the left or the right side of p_(n).

As shown in FIG. 5, assuming p,(0)>p,(1), and row 2
corresponds to the last variable node to be convolved to
generate p.(n), since w(v,c)=—4, eq. (13) becomes:

Pel)) = (paw(n +4)py (L) 1s)

Pew(n) = EXO)

Forn=8, 9, 10 and 11 in p_(n), the values in rectangle 502
are the same as the values in rectangle 504. Therefore, as
discussed previously, for n=8, 9, 10 and 11, the values for
P..,(n) can be determined simply by calculating p_(n)/p,(0).
Since for né[n,,,,, n,,..], p.,,(n)=0 for n>11 in eq. 14.

For n=4, 5, 6 and 7, the values in rectangle 506 are simply
the values in rectangle 504 multiplied by p,(1)/p,(0). There-
fore, the values in rectangle 508 can be determined by
simply subtracting the values in rectangle 506 from corre-
sponding values in p.(n) at n=4, 5, 6 and 7. The values in
rectangle 508 can then be divided by p,(0) to obtain corre-
sponding values of p_ (1) at n=4, 5, 6 and 7. As shown
above in eq. 14, forn=4, 5, 6 and 7, p,.,,(0)=(p.(n)-p_.,,(n+4)
p,(0)/p,(1). The corresponding values of p_, (n) were pre-
viously determined in the previous operation of the ZigZag
deconvolution process.

Similarly, for n=0, 1, 2 and 3, the values in rectangle 510
are simply the values in rectangle 508 multiplied by p,(1)/
p,(0). The corresponding values of p_, (n) can be determined
by calculating a difference between values in p_(n) at n=0,
1, 2 and 3 and corresponding values in rectangle 510, and
dividing the difference by p,(0). This ZigZag deconvolution
process can be continued until p_(n) is determined from
p.(n) by simple scaling, shifting and subtraction operations.
Thus, p.,(n) is determined from p_.(n) by selecting one or
more values of p_(n), that when divided by a variable node
probability (e.g., p,(0) or p,(1)), equal corresponding values
of p_,,(n). Then scaling those values by a ratio of variable
node probabilities, shifting the scaled values by an associ-
ated variable node weight, calculating a difference between
the scaled, shifted values and corresponding values of p_(n),
and scaling the difference values to create corresponding
values of p_,,(n). Using this simple process, a deconvolution
is easily calculated at ¢ for each neighboring variable node
v.

Regarding both CS-BP and RPC-BP, most of the compu-
tation is taken by computing constraint node messages. As
shown in Table 1, the computation cost of CS-BP is around
20 times that for RPC-BP in terms of the number of
multiplications (x) and additions (+) for various weight sets

TABLE 1

Complexity comparison between RPC-BP and CS-BP

RPC-BP CS-BP
W x + x +
=(1244) 492 246 8192 9216
=1(111244) 856 428 12288 13824
=(111222) 640 320 12288 13824
=(11111122) 954 477 16384 18432
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Example Environment

FIG. 6 illustrates an example environment 600 usable to
implement RPC-BP decoding. Example environment 600
includes a receiver 602 for receiving RP symbols and a
transmitter 604 for transmitting RP symbols via channel
606. Channel 606 may include a wired channel (e.g., twisted
pair, coax cable, fiber optics, power line, etc.) or a wireless
channel (e.g., radio frequency (RF) link, IEEE 802.11x, 4G
LTE, etc.). Thus, channel 606 may include a part of a
network (e.g., wireless network) as well as any media
suitable for the transport of modulated communications.
Channel 606 may also include a noisy channel, such that
signals that contain RP symbols received by receiver 602
may be corrupted by noise, fading, non-linear group delay,
other interferences, or the like.

Receiver 602 and transmitter 604 may be implemented in
many forms. In various embodiments, receiver 602 and
transmitter 604 are configured for real time communications
of high speed data (e.g., 1 Gbps) using RPC encoding and
RPC-BP decoding over a noisy channel 606.

Transmitter 604 includes an RPC encoder 608 for map-
ping source bits to RP symbols for transmission of RP
symbols to receiver 602 using transceiver 610. The RPC
encoder 608 may be implemented in hardware, firmware,
and/or software. In various embodiments, RPC encoder may
be implemented by a processing unit including hardware
control circuitry, hardware logic, one or more digital signal
processors (DSPs), one or more application specific inte-
grated circuits (ASICs), one or more field programmable
gate arrays (FPGAs), one or more central processing units
(CPUs), one or more graphics processing units (GPUs),
memory 609, and/or the like, for performing source bit
frame to RP symbol mapping, in addition to RP symbol
pairing. RPC encoder 608 may directly connect to trans-
ceiver 610 for transmission of RP symbols. RPC encoder
608 may be configured to process acknowledgements from
receiver 602 to stop transmission of RP symbols upon
receipt of an acknowledgement, and/or to transmit subse-
quent blocks of RP symbols when an acknowledgement is
not received after a specified waiting period. Transmitter
604 may also include one or more processors 612. Proces-
sors 612 may comprise electronic circuitry, logic, processing
cores, or the like, for processing executable instructions in
internal processor memory (not shown) as well as external
memory 614. Memory 614 may contain various modules,
such as RPC encode module 616. In some examples, the
RPC encode module 616 may entirely replace the RPC
encoder 608. In other examples, the RPC encode module
616 may be in addition to the RPC encoder 608 and may, for
example, contain instructions to facilitate the operation of
RPC encoder 608. In various embodiments, RPC encode
module 616 may perform some or all of the operations
described for RPC encoder 608.

In various embodiments, RP symbols are paired and
mapped to a modulation constellation, as illustrated in FIG.
1. Therefore, transceiver 610 may be configured to modulate
and transmit symbols using a modulation constellation, such
as QAM. Additionally, transceiver 610 may be configured to
transmit modulated RP symbols using various forms of
modulation that incorporate modulation constellations like
QAM, such as orthogonal frequency-division multiplexing
(OFDM), or the like. Transceiver 610 may be configured to
receive acknowledgements from receiver 602. Interfaces
618 may be used to facilitate communications with devices
or components embedded with, or external to, transmitter
604, that may include sources of data to be transmitted.
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Receiver 602 includes transceiver 620 for receiving RP
symbols transmitted by transmitter 604 via channel 606.
When a signal transmitted by transmitter 604 is a modulated
signal, transceiver 620 is configured to demodulate the
transmitted signal, and provide at least estimates of the RP
symbols to RPC-BP decoder 622. Thus, transceiver 620
demodulates a received signal, resulting in received sym-
bols, some of which may be different from the transmitted
symbols due to noise introduced in channel 606. RPC-BP
decoder 622 may be configured to implement RPC-BP
decoding as described herein. Thus, RPC-BP decoder 622
accumulates the demodulated symbols until a threshold
number of symbols have been received, and/or until trans-
mitter 604 stops transmitting symbols. The threshold num-
ber may be set based on a likelihood that the number of
symbols will include enough data to enable successful
decoding of the symbols, resulting in the original binary
information bits.

The RPC decoder 622 may be implemented in hardware,
firmware, and/or software. In various embodiments, RPC-
BP decoder 622 may be a processing unit that may include
hardware circuitry, hardware logic, one or more digital
signal processors DSPs, one or more application specific
integrated circuits (ASICs), one or more field programmable
gate arrays (FPGAs), one or more central processing units
(CPUs), one or more graphics processing unit (GPUs),
memory 623, and/or the like, for performing RPC-BP decod-
ing operations in real time for high speed data decoding.

Thus, in various embodiments, RPC-BP decoder 622
performs all or most of the RPC-BP decoding operations
described herein (e.g., operations 1-4), such as initialization
of variable nodes, iterative computations at constraint nodes
and variable nodes, and output of estimated bit values via
hard decisions. Thus, RPC-BP decoder 622 processes a
block of M, noisy RP symbols, to attempt to decode a frame
of N source bits. If RPC-BP decoder 622 is successful,
receiver 602 sends an acknowledgement to transmitter 604
via transceiver 620. If RPC-BP decoder 622 is not success-
ful, RPC-BP decoder 622 will receive additional RP sym-
bols, such as K symbols, from transmitter 604, and perform
RPC-BP decoding operations on the M +K symbols. As an
example, K<<M,,, which provides for seamless rate adap-
tation. This process may continue until RPC-BP decoder 622
successfully decodes the frame of N source bits, where
receiver 602 then sends an acknowledgement to transmitter
604.

Receiver 602 may also include one or more processors
624. Processors 624 may comprise electronic circuitry,
hardware logic, processing cores, cache memory (not
shown), or the like, for processing executable instructions in
internal processor memory as well as external memory 626.
Memory 626 may contain various modules, such as RPC
decode module 628. RPC decode module 628 may contain
instructions, for execution by processor(s) 624, to facilitate
the operation of RPC-BP decoder 622. In various embodi-
ments, RPC decode module 628 may perform some or all of
the operations described for RPC-BP decoder 622. Inter-
faces 630 may be used to facilitate communications with
devices or components embedded with, or external to,
receiver 602.

Although receiver 602 and transmitter 604 are described
herein as separate entities, components of transmitter 604
may be incorporated with or shared with components of
receiver 602, and visa-versa, to facilitate bidirectional com-
munications between devices.

Receiver 602, as well as transmitter 604 may include
and/or interface with, computer-readable media. Computer-



US 9,432,056 B2

13

readable media includes, at least, two types of computer-
readable media, namely computer storage media and com-
munications media.

Computer storage media includes volatile and non-vola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer readable instructions, data structures, program
modules, or other data. Computer storage media includes,
but is not limited to, RAM, ROM, EEPROM, flash memory,
cache memory or other memory in RPC-BP decoder 622, or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other non-transmission medium that can be
used to store information for access by a computing device.

In contrast, communication media may embody computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as a carrier wave,
or other transmission mechanism. As defined herein, com-
puter storage media does not include communication media.
Example Methods

FIG. 7 is a flow diagram of an example process performed
at a receiver, such as receiver 602. This process is illustrated
as a collection of blocks in a logical flow graph, which
represents a sequence of operations that can be implemented
in hardware, software, or a combination thereof. In the
context of software, the blocks represent computer-execut-
able instructions stored on one or more computer storage
media that, when executed by one or more processors, cause
the processors to perform the recited operations. In the
context of hardware, the blocks represent operations per-
formed by control circuitry with or without the assistance of
firmware or software. Note that the order in which the
process is described is not a limitation, and any number of
the described process blocks can be combined in any order
to implement the process, or alternate processes. Addition-
ally, individual blocks may be deleted from the processes
without departing from the spirit and scope of the subject
matter described herein. Furthermore, while this process is
described with reference to the receiver 602 of FIG. 6, other
hardware and/or software architectures may implement one
or more portions of this process, in whole or in part. In
various preferred embodiments, the components of receiver
602 are selected to provide real time decoding of blocks of
binary bits from blocks of RP symbol estimates during high
speed (e.g., =z1 Gbps) data transmission.

At block 702, a multi-level symbol (e.g., RP symbol) is
received by a receiver. As an example, receiver 602 receives,
demodulates and processes an RPC encoded signal received
over noisy channel 606 to generate a block of M estimated
RP symbols that are associated with a block of N desired
binary source bits, such as source bits 204.

At block 704, a multi-level symbol is associated with a
node. As an example, RPC-BP decoder 622 may abstractly
represent received multi-level RP symbols as constraint
nodes of a bipartite graph, where each constraint node is
connected to neighboring variable nodes by weighted edges
of the bipartite graph. FIG. 3 illustrates an example of
weighted edge connections between constraint node 318 and
neighboring binary variable nodes 302-316.

At block 706, a probability distribution function (PDF) is
computed by performing a convolution of probabilities of
neighboring nodes of the node. As an example, probability
distributions of probabilities of each variable node 302-316
(e.g., probabilities associated with a priori probability dis-
tributions of neighboring binary nodes), distributed accord-
ing to a corresponding edge weight of each of nodes 302-316
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(e.g., distribution 320), are convolved together to generate
the PDF of all neighboring variable nodes at each iteration
of a belief propagation algorithm. The convolution may be
performed by RPC-BP decoder 622 as shown in eq. (4).

At block 708, a partial probability distribution function is
computed for each of the neighboring binary nodes by
performing a deconvolution that includes subtracting one or
more scaled and shifted values of the PDF from one or more
other values of the PDF. As an example, to reduce compu-
tational complexity, the deconvolution is a ZigZag decon-
volution performed by various techniques as described
herein. As an example, the ZigZag deconvolution further
includes selecting one or more values from the PDF that
when scaled by a known scale factor, equal one or more
values of a respective partial probability distribution func-
tion. As part of the ZigZag deconvolution, the shifted values
of the PDF are shifted in a direction of left-to-right or
right-to-left across the PDF in the performing of the ZigZag
deconvolution. The direction is determined based at least in
part on a probability of a value of a respective neighboring
binary node, such as whether a probability of a zero is
greater than a probability of a one for a respective neigh-
boring binary node, as shown in eqgs. (13) and (14).

At block 710, a message is computed indicating a likeli-
hood of the probabilities for each of the neighboring binary
nodes, wherein each message is determined based at least in
part on the partial probability distribution function of the
respective neighboring binary node. As an example, using
messages associated with variable nodes 302-316 as part of
a belief propagation algorithm, RPC-BP decoder 622 com-
putes messages associated with constraint node 318 by
computing a convolution for all neighboring variable nodes
302-316, as well as computing the partial probability dis-
tribution functions for each variable node 302-316 using
ZigZag deconvolution. Then, RPC-BP decoder 622 com-
putes constraint node 318 messages (e.g., eq. 8) using the
partial probability distribution functions, the received RP
symbol estimate (e.g., S, of FIG. 3), and a noise PDF for
channel 606. RPC-BP decoder 622 the iteratively computes
variable node and constraint node messages (e.g., egs. 8 and
11) until convergence of the belief propagation algorithm is
determined or a pre-specified number of iterations have
occurred.

CONCLUSION

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
operations, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to
the specific features or operations described. Rather, the
specific features and acts are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A method comprising:

receiving, as a received multi-level symbol, a multi-level
symbol by a receiver over a channel that contributes a
noise value to a value of the received multi-level
symbol;

associating the received multi-level symbol with a node
and with at least one binary value associated with
neighboring binary nodes;

computing, by one or more processors, a probability
distribution function (PDF) by performing a convolu-
tion of probabilities of the neighboring binary nodes of
the node;
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computing, by the one or more processors, a partial
probability distribution function for each of the neigh-
boring binary nodes by performing a deconvolution
that includes subtracting one or more scaled and shifted
values of the PDF from one or more other values of the
PDF;

computing, by the one or more processors, a message
indicating a likelihood of the probabilities for each of
the neighboring binary nodes, wherein the message is
determined based at least in part on the partial prob-
ability distribution function of a respective neighboring
binary node of the neighboring binary nodes, the mes-
sage including at least a first probability that the at least
one binary value is a zero bit and a second probability
that the at least one binary value is a one bit; and

decoding, by the one or more processors, based at least in
part on the first probability and the second probability,
an estimate bit value of the at least one binary value, the
estimate bit value representing at least a portion of the
received multi-level symbol without contribution of the
noise value.

2. The method as recited in claim 1, wherein the message
is computed as a part of a belief propagation (BP) algorithm
for determining a desired bit sequence at the neighboring
binary nodes.

3. The method as recited in claim 1, wherein the node
represents a constraint node in a bipartite graph and the
neighboring binary nodes represent variable nodes con-
nected to the constraint node by weighted edges of the
bipartite graph.

4. The method as recited in claim 1, wherein the received
multi-level symbol is a random projection (RP) symbol that
has a number of levels greater than 2.

5. The method as recited in claim 1, wherein the prob-
abilities of the neighboring binary nodes are distributed as
probability distributions that are decided according to edge
weights between the node and the neighboring binary nodes
and a priori probability distributions of the neighboring
binary nodes.

6. The method as recited in claim 5, wherein the prob-
ability distributions for each of the neighboring binary nodes
include a binary probability distributed at zero and at a value
of an edge weight between the node and the respective
neighboring binary node.

7. The method as recited in claim 1, wherein each
message is further determined based at least in part on the
value of the received multi-level symbol received by the
receiver over the channel.

8. The method as recited in claim 1, wherein the message
is further determined based at least in part on a noise PDF
associated with the channel.

9. The method as recited in claim 1, wherein the decon-
volution is a ZigZag deconvolution.

10. The method as recited in claim 9, wherein performing
the ZigZag deconvolution further includes selecting one or
more values from the PDF and scaling the one or more
values from the PDF by a known scale factor to equal one
or more values of the partial probability distribution func-
tion.

11. The method as recited in claim 9, wherein the shifted
values of the PDF are shifted in a direction of left-to-right or
right-to-left across the PDF in the performing of the ZigZag
deconvolution.

12. The method as recited in claim 11, wherein the
direction is determined based at least in part on a probability
of the value of the respective neighboring binary node.
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13. A system comprising:
a processing unit configured to:
receive, as a received multi-level symbol, a multi-level
symbol from a receiver over a channel that contrib-
utes a noise value to a value of received the multi-
level symbol;

represent the received multi-level symbol as a node of
a graph;

compute a probability distribution function (PDF) by
performing a convolution of probabilities of binary
nodes connected to the node by weighted edges of
the graph, the binary nodes associated with at least
one binary value;

compute a partial probability distribution function for
each of the binary nodes connected to the node by
performing a deconvolution that includes selecting
one or more values from the PDF and scaling the one
or more values from the PDF by a known scale factor
to equal one or more values of the partial probability
distribution function;

compute a message indicating a likelihood of the
probabilities for each of the binary nodes connected
to the node based at least in part on the partial
probability distribution function of a neighboring
binary node, the message including at least a first
probability that the at least one binary value is a zero
bit and a second probability that the at least one
binary value is a one bit; and

decode, based at least in part on the first probability and
the second probability, an estimate bit value of the at
least one binary value, the estimate bit value repre-
senting at least a portion of the received multi-level
symbol without contribution of the noise value.

14. The system of claim 13, wherein:

the graph is a bipartite graph; and

the message is computed as a part of a belief propagation
(BP) algorithm to determine a desired bit sequence
associated with the received multi-level symbol.

15. The system of claim 13, wherein the probabilities of
the binary nodes connected to the node are distributed
according to edge weights of the weighted edges between
the node and the neighboring binary node.

16. The system of claim 13, wherein the deconvolution is
a ZigZag deconvolution, and performing the ZigZag decon-
volution further includes subtracting one or more scaled and
shifted values of the PDF from one or more other values of
the PDF.

17. The system of claim 16, wherein the shifted values of
the PDF are shifted in a direction of left-to-right or right-
to-left across the PDF in the performing of the ZigZag
deconvolution, the direction being determined based at least
in part on whether a probability of a zero is greater than a
probability of a one for a respective binary node connected
to the node.

18. A system comprising:

a receiver to receive, as received multi-level symbols,
multi-level symbols over a channel that contributes a
noise value to a value of the received multi-level
symbols, the received multi-level symbols correspond-
ing to a desired block of binary source bits; and

a processing unit configured to:
represent each received multi-level symbol of the

received multi-level symbols as a corresponding
node of a graph;
for each corresponding node of the graph:
compute a probability distribution function (PDF) by
performing a convolution of probabilities of
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binary nodes connected to the corresponding node
by weighted edges of the graph;
compute a partial probability distribution function
for each of the binary nodes connected to the
corresponding node by performing a ZigZag 5
deconvolution in a direction that is determined
based on a probability of a value of the respective
binary node; and
compute one or more messages indicating a likeli-
hood of the probabilities for each of the binary 10
nodes connected to the corresponding node based
at least in part on the partial probability distribu-
tion function of a neighboring binary node, the
one or messages including at least a first probabil-
ity that the value is a zero bit and a second 15
probability that the value is a one bit; and
decode, based at least in part on the first probability and
the second probability, the received multi-level sym-
bols as the desired block of binary source bits, the
desired block of source bits decoded by removing a 20
noise value associated with the received multi-level
symbols.

19. The system of claim 18, wherein the graph is a
bipartite graph and the processing unit computes the one or
more messages as part of a belief propagation (BP) to 25
decode the received multi-level symbols to the desired block
of binary source bits.

20. The method of claim 1, further comprising adjusting
atransmission rate of the channel based at least in part on the
received multi-level symbol received by the receiver. 30
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